1,138 research outputs found

    Village chiefs in China : incomplete agents      

    Get PDF
    In the field of political science, township governments and villages are dealt with in different contexts. Studies on township governments are often discussed in the context of intergovernmental relations, and emphasize the hierarchy of the government’s power system and aspects of policy enforcement. Studies on villages, on the other hand, are frequently discussed in the context of villagers’ autonomy, with attention paid to factors such as the election systems and autonomy issues. This paper examines how collective economies and village election shape the relationship between township governments and villages (village chiefs) from the perspective of the principal-agent approach, based on case studies of China’s coastal region

    Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN

    Full text link
    Discriminative localization is essential for fine-grained image classification task, which devotes to recognizing hundreds of subcategories in the same basic-level category. Reflecting on discriminative regions of objects, key differences among different subcategories are subtle and local. Existing methods generally adopt a two-stage learning framework: The first stage is to localize the discriminative regions of objects, and the second is to encode the discriminative features for training classifiers. However, these methods generally have two limitations: (1) Separation of the two-stage learning is time-consuming. (2) Dependence on object and parts annotations for discriminative localization learning leads to heavily labor-consuming labeling. It is highly challenging to address these two important limitations simultaneously. Existing methods only focus on one of them. Therefore, this paper proposes the discriminative localization approach via saliency-guided Faster R-CNN to address the above two limitations at the same time, and our main novelties and advantages are: (1) End-to-end network based on Faster R-CNN is designed to simultaneously localize discriminative regions and encode discriminative features, which accelerates classification speed. (2) Saliency-guided localization learning is proposed to localize the discriminative region automatically, avoiding labor-consuming labeling. Both are jointly employed to simultaneously accelerate classification speed and eliminate dependence on object and parts annotations. Comparing with the state-of-the-art methods on the widely-used CUB-200-2011 dataset, our approach achieves both the best classification accuracy and efficiency.Comment: 9 pages, to appear in ACM MM 201

    A rapid aeroelasticity optimization method based on the stiffness characteristics

    Get PDF
    A rapid aeroelasticity optimization method based on the stiffness characteristics was proposed in the present study. Large time expense in static aeroelasticity analysis based on traditional time domain aeroelasticity method is solved. Elastic axis location and torsional stiffness are discussed firstly. Both torsional stiffness and the distance between stiffness center and aerodynamic center have a direct impact on divergent velocity. The divergent velocity can be adjusted by changing the correlative structural parameters. The relation between structural parameters and divergent velocity is introduced to aeroelasticity optimization design as a constraint condition. After optimization, the structural and aerodynamic characteristics have a large improvement while satisfying the constraint conditions. The optimization method can be well used in high aspect ratio wing and has great computational efficiency.Peer Reviewe

    EIGEN: Ecologically-Inspired GENetic Approach for Neural Network Structure Searching from Scratch

    Full text link
    Designing the structure of neural networks is considered one of the most challenging tasks in deep learning, especially when there is few prior knowledge about the task domain. In this paper, we propose an Ecologically-Inspired GENetic (EIGEN) approach that uses the concept of succession, extinction, mimicry, and gene duplication to search neural network structure from scratch with poorly initialized simple network and few constraints forced during the evolution, as we assume no prior knowledge about the task domain. Specifically, we first use primary succession to rapidly evolve a population of poorly initialized neural network structures into a more diverse population, followed by a secondary succession stage for fine-grained searching based on the networks from the primary succession. Extinction is applied in both stages to reduce computational cost. Mimicry is employed during the entire evolution process to help the inferior networks imitate the behavior of a superior network and gene duplication is utilized to duplicate the learned blocks of novel structures, both of which help to find better network structures. Experimental results show that our proposed approach can achieve similar or better performance compared to the existing genetic approaches with dramatically reduced computation cost. For example, the network discovered by our approach on CIFAR-100 dataset achieves 78.1% test accuracy under 120 GPU hours, compared to 77.0% test accuracy in more than 65, 536 GPU hours in [35].Comment: CVPR 201
    • …
    corecore